This document describes the software design and functional requirements of the Phase II Integrated Assessment Model (IAM), referred to as the NRAP-Open-IAM in the current document. This design process adapted a use-case-driven approach [6] to design a general purpose open source version of the IAM, built upon the development effort of Phase I NRAP-IAM-CS [4], [7]. Based on this general-purpose design, a core-functionality prototype version of the NRAP-Open-IAM was developed and tested.

In NRAP Phases II and III researchers are developing an integrated assessment model that will incorporate workflows for containment assurance, monitoring design, post-injection site care, assessment of model concordance to measured field data, evaluation of the performance of mitigation alternatives, and updating of probabilistic assessments as new data become available. The design goals are to create a flexible framework for the integrate assessment model that will be easily maintainable, flexible, and extendable.

The document is intended to outline the NRAP-Open-IAM design structure and functionality and give guidance to the developers of reduced order models (ROMs), monitoring modules, utility applications and algorithm developers for interfacing and integrating their models into the NRAP-Open-IAM. The scope of the functionalities of the NRAP-Open-IAM include risk quantification, risk management and support of iterative risk assessment processes. The system components include the geophysical and geochemical model components for risk quantification, analysis components for risk management and parameter passing workflows, procedures and mechanisms allowing the communications between the different system components to support iterative risk assessment processes.
2.1 Introduction

NRAP-Open-IAM is an open-source Integrated Assessment Model (IAM) for Phases II and III of the National Risk Assessment Partnership (NRAP). The goal of this software is to go beyond risk assessment into risk management and containment assurance. NRAP-Open-IAM is currently in active development and is available for testing and feedback only.

As this is a prototype of software being actively developed, we are seeking any feedback or bug reports. Feedback can be emailed to the NRAP-Open-IAM project at NRAP@netl.doe.gov, or the current development team lead at Nathaniel.Mitchell@netl.doe.gov, or any other member of the development team.

Issues can also be reported on GitLab issues page for NRAP-Open-IAM: https://gitlab.com/NRAP/OpenIAM/-/issues?sort=created_date&state=opened

If you have been given access to the code indirectly and would like to be notified when updates are available for testing, please contact the development team to be added to our email list.

2.2 Downloading NRAP-Open-IAM

NRAP-Open-IAM tool and examples can be downloaded from a public GitLab repository located at https://gitlab.com/NRAP/OpenIAM. If the NRAP-Open-IAM was downloaded from the GitLab repository, the folder name may have the repository’s current hash appended to it. To simply the folder name, the user can rename the folder NRAP_Open_IAM.

In addition to that, the copy of the tool can be obtained through NETL’s Energy Data eXchange website: https://edx.netl.doe.gov/dataset/phase-iii-nrap-open-iam by requesting an access through e-mail addressed to NRAP@netl.doe.gov. The NRAP-Open-IAM is distributed as a zip file that can be extracted in the location specified by user.
2.3 Installing NRAP-Open-IAM

The NRAP-Open-IAM requires Python version 3.9 or greater to operate. If you need to install Python, descriptions of the installation process are provided separately for Windows, macOS, and Linux (see below). After installing a Python distribution, such as Anaconda Navigator, continue following the instructions further below.

For Windows: The file Installation_Instructions_Windows.txt describes steps to install a Python distribution on Windows.

For macOS: The file Installation_Instructions_macOS.txt describes the steps to install a Python distribution on macOS.

For Linux OS: Linux users are assumed to know how to install a Python distribution for their specific version of Linux.

Once a Python distribution is installed, open a command prompt. For example, if using Anaconda Navigator, open “Anaconda Prompt.” Once Anaconda Navigator is installed on Windows, Anaconda Prompt can be found by typing “Anaconda Prompt” in the Windows search bar.

In the command prompt, navigate to the installation directory of NRAP-Open-IAM. The installation directory has the files ‘User_Guide.pdf’ and ‘Developer_Guide.pdf’ as well as folders such as ‘examples’ and ‘src’. On Windows, the path to the directory can be copied from File Explorer. In the command prompt, the user can then navigate to the installation directory by typing “cd,” a space, and then pasting the installation directory and hitting enter. Alternatively, the user can navigate by typing “cd”. a space, and then manually typing the path to the installation directory. Typing “cd ..” in the command prompt will navigate up one directory (e.g., going from C:\Users\USERNAME\Documents\ to C:\Users\USERNAME, where USERNAME is a placeholder for the user name). Note that hitting the tab button will automatically complete a partially entered directory name - this approach can significantly speed up navigation in a command prompt.

Once in the installation directory of NRAP-Open-IAM in a command prompt, type the following command and hit enter:

```
conda create -n OpenIAMEnv python=3.10 pip
```

The command shown above creates an environment called “OpenIAMEnv” with Python version 3.10 and the pip Python package. The environment can be given a different name by using a different name in place of “OpenIAMEnv,” but that different name should then be used in place of “OpenIAMEnv” in the instructions further below.

Next, activate the “OpenIAMEnv” environment with this command:

```
conda activate OpenIAMEnv
```

The command prompt will show “(OpenIAMEnv)” to the left, indicating that the environment is active.

Next, enter the following command:

```
python -m pip install -e .
```

It is important to include the period (“.”) at the end of the command. This step will install all of the required Python libraries within the “OpenIAMEnv” environment. Specifically, the file “setup.cfg” in the installation directory of NRAP-Open-IAM is used during this step to obtain all of the required libraries.

If you are using Anaconda Navigator and wish to use the integrated development environment Spyder as well as Jupyter Notebook, you can then use pip to install those programs:

```
python -m pip install spyder notebook
```

The user can then open Spyder with the following command:

```
spyder
```
The user can also open Jupyter Notebook by using the following command:

```bash
jupyter notebook
```

To easily access the Jupyter Notebook examples for NRAP-Open-IAM, use the command above while located in the installation directory of NRAP-Open-IAM.

To use NRAP-Open-IAM in the future (control file examples, Jupyter Notebook examples, or script examples), the “OpenIAMEnv” environment must first be activated each time. The environment only needs to be created once, but after it is created and all of the Python libraries are installed within it, it must be activated with the “conda activate OpenIAMEnv” command shown above.

To deactivate the environment, use the following command:

```bash
conda deactivate
```

On macOS and Linux machines the gfortran compiler needs to be present/installed to compile some of the NRAP-Open-IAM code (macOS users can find gfortran here: https://gcc.gnu.org/wiki/GFortranBinariesMacOS).

After the proper version of Python is installed, the NRAP-Open-IAM can be set up and tested. **Note: If Python was installed through Anaconda, please use Anaconda prompt instead of command prompt for setup and tests.**

In the NRAP-Open-IAM distribution folder find and open the sub-folder `setup`. Next, open a command prompt (or Anaconda prompt) in the `setup` folder. On Windows, this can be done by holding Shift and right clicking inside the folder when no file is selected, then selecting Open command window here; alternatively, one can navigate to the folder `setup`, type `cmd` in the address bar of the file browser, and then hit Enter to open the command prompt there. On Windows, Anaconda prompt can be found in the programs menu under the submenu Anaconda3 (64-bit). Run the setup script by entering the command:

```bash
python openiam_setup_tests.py
```

in the command prompt (or Anaconda prompt). This will test the version of Python installed on the system. Next, the setup script will test the versions of several Python libraries that the NRAP-Open-IAM depends on. The setup script will compile several Fortran libraries needed for some component models on Mac and Linux. Users of Windows OS will be provided with the compiled libraries. Finally, the setup script will run the test suite to see if the NRAP-Open-IAM has been installed correctly. If the results printed to the console indicate errors during the testing the errors have to be resolved before the NRAP-Open-IAM can be used. When contacting the developers to resolve problems, please include all output from the setup script or test suite runs (i.e., all of the error messages).

2.4 Testing installation

After setup, the test suite can be run again by entering the NRAP-Open-IAM `test` directory in a terminal and typing:

```bash
python iam_test.py
```

Test results will be printed to the terminal. The setup script run during the installation process uses the same test suite after testing whether the necessary Python libraries are installed, and compiling the NRAP-Open-IAM libraries.
2.5 Contributors

During the Phase II and/or Phase III of the NRAP the following researchers contributed to the development of NRAP-Open-IAM (listed in alphabetical order with affiliation at the time of active contribution):

- Diana Bacon (Pacific Northwest National Laboratory)
- Seunghwan Baek (Pacific Northwest National Laboratory)
- Pramod Bhuvankar (Lawrence Berkeley National Laboratory)
- Suzanne (Michelle) Bourret (Los Alamos National Laboratory)
- Julia De Toledo Camargo (Pacific Northwest National Laboratory)
- Bailian Chen (Los Alamos National Laboratory)
- Abdullah Cihan (Lawrence Berkeley National Laboratory)
- Dylan Harp (Los Alamos National Laboratory)
- Paul Holcomb (National Energy Technology Laboratory)
- Jaisree Iyer (Lawrence Livermore National Laboratory)
- Elizabeth Keating (Los Alamos National Laboratory)
- Seth King (National Energy Technology Laboratory)
- Greg Lackey (National Energy Technology Laboratory)
- Ernest Lindner (National Energy Technology Laboratory)
- Kayyum Mansoor (Lawrence Livermore National Laboratory)
- Mohamed Mehana (Los Alamos National Laboratory)
- Saro Meguerdijian (Los Alamos National Laboratory)
- Nathaniel Mitchell (National Energy Technology Laboratory)
- Omotayo Omosebi (Lawrence Berkeley National Laboratory)
- Shaparak Salek (National Energy Technology Laboratory)
- Veronika Vasylkivska (National Energy Technology Laboratory)
- Ya-Mei Yang (National Energy Technology Laboratory)
- Yingqi Zhang (Lawrence Berkeley National Laboratory)
3.1 Component model

The NRAP-Open-IAM is built on the open-source concept to promote transparency and to give advanced users the capability to contribute to the code. The main framework for the NRAP-Open-IAM is written in Python 3. Python provides the cross-platform capabilities, an extensive number of libraries for data handling, analysis, and visualization, the flexibility to interact with other languages that component models may use (Fortran, C++, etc.). No coding style is enforced but conforming to PEP 8 is recommended. The exceptions are that the line lengths should not exceed 120 characters, and spaces (no tabs) must be used for indentations.

Underpinning the NRAP-Open-IAM is the MATK Python package (Model Analysis ToolKit) [1] which provides a framework for the system model components. The NRAP-Open-IAM is designed to be flexible with regard to how component models are added so only the desired components of the system model need to be included for a specific use case.

We start with describing the two main terms developer has to know for the successful integration of a component model into the NRAP-Open-IAM framework. The first term is simulation model (sometimes referred to as a component model) that stands behind every building block (component) of the system. For example, a reservoir and a collection of wellbores can constitute one system within the NRAP-Open-IAM. The behavior of the reservoir and wellbores within the system is described by simulation models developed specifically for a given component (e.g., reservoir or wellbore). Thus, simulation model is a function which when provided with the component input parameters calculates the corresponding output (describes the component behavior). The component code must be licensable as open source. This guide is intended to instruct simulation code developers on the integration of their simulation models into the NRAP-Open-IAM framework regardless of the language used to develop the simulation model.

The second term is component model (ComponentModel) class. The NRAP-Open-IAM code relies on using several classes providing the framework for all use cases. Among these classes are SystemModel and ComponentModel classes. Every component (class) currently available within the NRAP-Open-IAM distribution is written as a class which inherits its main features, attributes and methods from ComponentModel class.

The ComponentModel class is written to help integrate different kinds of simulation models into the NRAP-Open-IAM framework. It serves as a wrapper in the case when the simulation model is developed in a language different from Python. It is used as an interface between the NRAP-Open-IAM and simulation models already written in Python. Two instance methods of the ComponentModel class that we consider first are __init__ and simulation_model. These two methods are examples of methods that are usually redefined within a given component.

```python
class ComponentModel(object):
    """
    NRAP-Open-IAM ComponentModel class.

    Class represents basic framework to construct component models, handle different types of parameters and observations.
    """
```

(continues on next page)
"""
def __init__(self, name, parent, model='',
 model_args=[], model_kwargs={}, workdir=None):
 """

Constructor method of ComponentModel class.

:param name: name of component model
:type name: str

:param parent: the SystemModel object that the component model belongs to
:type parent: SystemModel object

:param model: Python function whose first argument is a dictionary
 of parameters. The function returns dictionary of model outputs.
:type model: function or method that is called when the component is run

:param model_args: additional optional parameters of the component
 model; by default, model_args is empty list []
:type model_args: [float]

:param model_kwargs: additional optional keyword arguments of
 the component model; by default, model_kwargs is empty dictionary {}.
:type model_kwargs: dict

:param workdir: name of directory to use for model runs (serial run case)
:type workdir: str

:returns: object -- ComponentModel object
 """
 self._parent = parent
 self.name = name
 self.model = model
 self.model_args = model_args
 self.model_kwargs = model_kwargs
 self.workdir = workdir

 # Parameters
 self.default_pars = OrderedDict()
 self.deterministic_pars = OrderedDict()
 self.pars = OrderedDict()
 self.composite_pars = OrderedDict()
 self.gridded_pars = OrderedDict()
 self.parlinked_pars = OrderedDict()
 self.obslinked_pars = OrderedDict()
 self.compositeobslinked_pars = OrderedDict()

 # Keyword arguments
 self.obs_linked_kwargs = OrderedDict()
 self.grid_obs_linked_kwargs = OrderedDict()
 self.dynamic_kwargs = OrderedDict()
 self.collection_linked_kwargs = OrderedDict()
Observations

```python
self.linkobs = OrderedDict()
self.accumulators = OrderedDict()
self.obs = OrderedDict()
self.grid_obs = OrderedDict()
self.local_obs = OrderedDict()
```

Set the working directory index for parallel runs

```python
self.workdir_index = 0
```

Setup how often the model method should be run

```python
self.run_frequency = 2
```

Other methods of the class follow the __init__ method

The `__init__` method of `ComponentModel` class defines possible attributes of the `ComponentModel` class object. We will discuss them later in the guide. The `model` attribute of the class object is defined by the `model` argument provided to the `__init__` method. A user’s component model class derived from the `ComponentModel` class usually utilizes `__init__` method to define the setup of the component. It can be used to set the attributes of the component needed for the proper functioning of its simulation model: e.g., input parameters of the component and their bounds, properties of component observations, directory containing any extra files. We will use snapshots of the available NRAP-Open-IAM code to show the possible implementation of the `__init__` method.

3.2 Method __init__

In this section we consider an example of a typical `__init__` method in a component.

```python
class Component1(ComponentModel):
    def __init__(self, name, parent, attr1, attr2, **kwargs):
        # Set up keyword arguments of the 'model' method provided by the system model
        model_kwars = {'time_point': 365.25, 'time_step': 365.25}
        super().__init__(name, parent, model=self.simulation_model, model_kwargs=model_kwars)

        # Set default parameters of the component model
        self.add_default_par('par1', value=3.0)
        self.add_default_par('par2', value=2.0)
        self.add_default_par('par3', value=-7.0)
        self.add_default_par('par4', value=0.0)

        # Define dictionary of parameters boundaries
        self.pars_bounds = dict()
        self.pars_bounds['par1'] = [1.0, 5.5]
        self.pars_bounds['par2'] = [0.0, 10.0]
        self.pars_bounds['par3'] = [-100.0, 100.0]
        self.pars_bounds['par4'] = [-100.0, 100.0]

        # Define dictionary of temporal data limits
```

(continues on next page)
Boundaries of temporal inputs are defined by the simulation model

```python
self.temp_data_bounds = dict()
self.temp_data_bounds['temp_input1'] = ['Temporal input 1', 1., 5.]
self.temp_data_bounds['temp_input2'] = ['Temporal input 2', 1.5, 4.5]
```

Define accumulators and their initial values

```python
self.add_accumulator('accumulator1', sim=0.0)
self.add_accumulator('accumulator2', sim=1.0)
```

Define additional component model attributes

```python
self.additional_attr1 = attr1
self.additional_attr2 = attr2
```

Indicate how often the component should be run

```python
self.run_frequency = 2
```

Define the conditional attribute if it is provided in kwargs

```python
if 'cond_attr' in kwargs:
    self.conditional_attr = kwargs['cond_attr']
```

Next we consider the code line by line. The first line initiates the `Component1` class and specifies that it is derived from the `ComponentModel` class (i.e., inherits all methods and attributes from the `ComponentModel` class). The second (non-blank) line shows that the constructor method `__init__` has several arguments: `name`, `parent`, `attr1`, `attr2`, and possibly some extra keyword arguments whose names are not provided.

```python
model_kwargs = {'time_point': 365.25, 'time_step': 365.25}
super().__init__(name, parent, model=self.simulation_model, model_kwargs=model_kwargs)
```

The next line indicates that the simulation model of the component is a time-dependent function since component requires time point and time step as its keyword arguments. Method `super` calls the constructor method `__init__` of the base class `ComponentModel`. It provides a shortcut to include a base class’s methods without having to know the base class type or name. The `super` method uses the `model_kwargs` variable as arguments of the `ComponentModel` class's `__init__` method. Analysis of the arguments of the `__init__` method shows that for this component the `model` attribute of the class object (`self.model`) is defined as a method since `model` argument of the `__init__` method has to provide a `simulation model` of the component, i.e. model (method/function) that transforms components input parameters into its output.

```python
self.add_default_par('par1', value=3.0)
self.add_default_par('par2', value=2.0)
self.add_default_par('par3', value=-7.0)
self.add_default_par('par4', value=0.0)
```

The next four lines show that the `Component1` class object has four parameters with names `par1`, `par2`, `par3` and `par4`. The parameters are assigned default values of 3.0, 2.0, -7.0, and 0.0, respectively. The number of possible model parameters is not limited by the NRAP-Open-IAM framework. The purpose of this section of code in the `__init__` method is to ensure that all parameters of the simulation model corresponding to the component are defined even when not all parameters values are defined by users at runtime. The values provided here are arbitrary.

```python
self.pars_bounds = dict()
self.pars_bounds['par1'] = [1.0, 5.5]
self.pars_bounds['par2'] = [0.0, 10.0]
```
The four lines above define the dictionary attribute `pars_bounds` containing the upper and lower boundaries for each parameter of the simulation model. This attribute is used in the method `check_input_parameters` of the `ComponentModel` class which can be redefined within the derived component class to overwrite the default parameter bounds checks. The method `check_input_parameters` is called before the start of each simulation to check whether the provided input parameters satisfy the defined boundaries. An implementation of the default `check_input_parameters` method is discussed later.

In many cases, the simulation model accepts time-varying inputs which have to (possibly) satisfy some model limitations. The check for these limitations should be implemented in the `simulation_model` method since these inputs change in time: this way the limits will be rechecked at each time step as opposed to only at instantiation of the component model object. Similar to input parameters, the number of possible temporal inputs of the simulation model is not limited by the NRAP-Open-IAM framework.

Each entry of the dictionary `temp_data_bounds` is a list of three elements (right sides of the last two expressions above): the first is an explanatory name of the temporal input, the last two are the lower and upper boundaries of the input. An example of the possible implementation of the temporal inputs check method is discussed later in the guide.

The two lines above allow the creation of observations within the model (sometimes strictly internal to the component model) whose current value depends on observation values the component model produced at the previous time step(s). The accumulators are usually used in the `simulation_model` method for the storage of internally calculated values needed for the `simulation_model` method at the next time step (e.g., total mass calculated from flow rates at each time step).

In some cases the setup of the component requires the definition of additional attributes specific for the given component (e.g., attributes that address the setup of the component) that do not change during simulation and can be utilized in the component model method or by other components. The names `additional_attr1` and `additional_attr2` are arbitrary and can be defined to represent the intended purpose.

The following line serves as a possible example of the use of additional attributes.

Attribute `run_frequency` is a flag variable that informs the system model of the frequency at which the component simulation model should be called. The possible values are 2, 1, and 0. A value of 2 means that the model is called for each time point supplied by the system, thus, the value of 2 is assigned, by default, to every `ComponentClass` instance and to all derived class instances. Consequently, the line demonstrated above (`self.run_frequency = 2`) is not required if this is an intended behavior. If the behavior (frequency of calling the simulation model) should be different, the line should be changed to

or
self.run_frequency = 0

A value of 1 means that the simulation model should be run only for the first time point. A value of 0 means that the simulation model of a particular component should not be run at all. This is useful in the situations when the component does not have a simulation_model method, and serves as a container for parameters rather than a source of outputs, or when the simulation_model method should not be run after a particular time point. In the latter case some other system component should control when the model method of a given component should be turned off.

if 'cond_attr' in kwargs:
 self.conditional_attr = kwargs['cond_attr']

Some of the Component1 object attributes may not be defined for all instances. In this case the attribute can be assigned a value, for example, only if a particular argument of the __init__ method was provided. The conditional arguments can control and define some features of the simulation model defined by the developer. The names conditional_attr and cond_attr are arbitrary and for illustration purposes only. They can be defined to represent the intended purpose of the attribute.

3.3 Method simulation_model

The simulation_model method is an instance method of the component class that either calls the simulation model (typical if the simulation model is an external code not written in Python), or is the simulation model itself (typical if the simulation model is written in Python and can be implemented directly in the component class). To avoid confusion the method is named differently (self.simulation_model) from the instance attribute (self.model) containing reference to the method. The simulation_model method must accept a dictionary of input parameter values keyed by parameter names as the first argument and return a dictionary of model results keyed by distinct observation names. It is assumed that the arguments of the simulation_model method can be split into time-constant and time-varying arguments. All constant parameters defined by the user of the component model must be passed to the simulation_model method in the dictionary described above. The time-varying and other types of arguments (not defined by user) can be passed as keyword arguments. The header of the simulation_model method can include the default values of these arguments for situations when they are not provided (see first line below; e.g., temp_input1=2.0). Sample code of a simulation_model method is provided below. Note that this is just one of the possible implementations of the simulation_model method. The comments along with code sections provide suggestions of simulation_model method implementation. For additional examples please refer to the source code of existing NRAP-Open-IAM components, e.g., source/openiam/multisegmented_wellbore_component.py. The source code of the example component can be found in the folder examples/scripts/iam_example_component.py.

def simulation_model(self, p, temp_input1=2.0, temp_input2=3.0, time_point=365.25, time_step=365.25):
 """
 :param p: input parameters of Component1 model
 :type p: dict

 :param temp_in1: the first of the two varying in time inputs of simulation_model method with default value of 2.0
 :type temp_in1: float

 :param temp_in2: the second of the two varying in time inputs of simulation_model method with default value of 2.0
 :type temp_in2: float

 :param time_point: time point in days at which the model output is
 (continues on next page)
to be calculated; by default, its value is 365.25 (1 year in days)
:type time_point: float

:param time_step: difference between the current and previous
time points in days; by default, its value is 365.25 (1 year in days)
:type time_point: float

""
Obtain the default values of the parameters from dictionary
of default parameters
actual_p = dict([(k,v.value) for k,v in self.default_pars.items()])

Update default values of parameters with the provided ones
actual_p.update(p)

For the initial time point 0.0 the model should be able to return
the initial values of the component observations
if time_point == 0.0:
 # Define initial values of the model observations
 # The values chosen are arbitrary and the number of possible
 # observations of model is not NRAP-Open-IAM framework limited
 out = {}
 out['obs1'] = 0.0
 out['obs2'] = 0.0
 out['obs3'] = 0.0

 # Exit method
 return out

Check whether the temporal inputs satisfy the model requirements
and/or assumptions if needed
The instance method check_temporal_input can use the attribute
temp_data_bounds defined in the __init__ method
assumptions_satisfied = self.check_temporal_input(time, temp_input1, temp_input2)

The next steps depend on a particular implementation of the simulation_model method
if assumptions_satisfied:
 # Calculate output of the component using parameters and
 # temporal keyword arguments. The signature of the model_function
 # is not defined by the NRAP-Open-IAM framework
 output = model_function(p, temp_input1, temp_input2, time_point, time_step)

 # Assign values to the component accumulators
 # acc_fun1 and acc_fun2 are replacement names for some actions performed
 # on the variable output in order to obtain accumulators values
 self.accumulators['accumulator1'].sim = acc_fun1(output)
 self.accumulators['accumulator2'].sim = acc_fun2(output)

 # Assign model observations
 # f1, f2, f3 are function names replacing some actions performed
 # on the variable output in order to obtain observations values
 out['obs1'] = f1(output)
Additional coding is required for implementing a simulation_model method serving as a wrapper for the models developed in different programming languages. Simple examples of wrappers for the models implemented in Fortran are presented in the file `iam_simple_models.py` located in the `examples/scripts` folder of the NRAP-Open-IAM distribution and described in the next section.

3.4 Method simulation_model as a wrapper

In some situations the developer of the component might have a code written in language different from Python (e.g., Fortran), and rewriting the code in Python might not be worth the efforts. In this section, we present an approach which is used for some components in NRAP-Open-IAM and describes integration of the Fortran code. We start with a simple example of a Fortran routine involving different types of input parameters and results (model outputs).

```fortran
subroutine quad_eq_fun(a, b, c, x, N, x1, x2, y, flag) bind(C, name='quad_eq_fun')
    implicit none
    real*8, intent(in) :: a
    real*8, intent(in) :: b
    real*8, intent(in) :: c
    real*8 :: D
    real*8, intent(out) :: x1
    real*8, intent(out) :: x2
    integer, intent(in) :: N
    integer, intent(out) :: flag
    integer :: i
    real*8, parameter :: epsil = 1d-20
    real*8, dimension(1:N), intent(in) :: x
    real*8, dimension(1:N), intent(out) :: y

    D = b*b - 4.0*a*c

    if (abs(D) > epsil) then
        if (D .GT. 0.0) then
            x1 = (-b + sqrt(D))/(2.0*a)
            x2 = (-b - sqrt(D))/(2.0*a)
            flag = 1 ! indicates two real distinct roots
        else
            x1 = -b/(2.0*a) ! returns real part of the roots
            x2 = sqrt(-D)/(2.0*a) ! returns complex part of the roots
            flag = 3
        endif
    else
        x1 = -b/(2.0*a)
        x2 = x1
    endif
```

(continues on next page)
flag = 2
endif
do i = 1, N
 ! calculates parabola y-values for the entered parameters a, b, c and x-values
 y(i) = a*x(i)*x(i) + b*x(i) + c
end do
return
end subroutine quad_eq_fun

First, for the Fortran function to be used in the Python code it should be compiled into a library with the Fortran
compilers. Compilation of the Fortran code should be tested for all supported platforms. We assume that the users
working on Mac or Linux platforms should be able to easily and properly compile the code into corresponding libraries.
For Windows users the compiled libraries will be provided. For illustration purposes we assume that the example
Fortran routine is located in file iam_quad_eq_fortran_model.f90. In order to compile the above code in Windows one
can use the gfortran compiler installed and run in a Cygwin environment as

$ gfortran -c iam_quad_eq_fortran_model.f90
$ gfortran -shared -o quad_eq_fun.dll iam_quad_eq_fortran_model.o

Option -c of the first step directs gfortran to compile the Fortran file to an object file, rather than producing a standalone
executable. This flag should be used if the program source code consists of several files. The object files produced by
this command can later be linked together into a complete program.

The compilation of the code on Mac or Linux differs only in the second line. In Mac the second step is

$ gfortran -dynamiclib -o quad_eq_fun.dylib iam_quad_eq_fortran_model.o

For Linux the steps look like

$ gfortran -fpic -c iam_quad_eq_fortran_model.f90
$ gfortran -shared -fpic -o quad_eq_fun.so iam_quad_eq_fortran_model.o

The resulting library files for Windows, Mac and Linux will be quad_eq_fun.dll, quad_eq_fun.dylib, and
quad_eq_fun.so, respectively.

The following code demonstrates calling the compiled code within a simulation_model method. The method returns
the y-coordinates of the points on a parabola $y = ax^2 + bx + c$ also calculated inside library for defined x-values and
coefficients a, b, c.

```python
def simulation_model(p, input_array_x=None):
    '''
    Return three outputs based on the provided input parameters.
    :param p: dictionary of parameters passed to the function
    :type p: dict
    :param input_array_x: input array
    :type input_array_x: numpy.array
    :returns: dictionary containing output variable and array
    '''
    # Obtain the default values of the parameters from dictionary
```

3.4. Method simulation_model as a wrapper 15
of default parameters
actual_p = dict([(k, v.value) for k, v in self.default_pars.items()])

Update default values of parameters with the provided ones
actual_p.update(p)

a = actual_p['a']
b = actual_p['b']
c = actual_p['c']

if input_array_x is None:
 input_array_x = np.linspace(-10.0, 10.0, 1000)

Determine the size of input array
N = np.size(input_array_x)

Setup library and needed function names
if platform == "linux" or platform == "linux2":
 # linux
 library = "quad_eq_fun.so"
elif platform == "darwin":
 # OS X
 library = "quad_eq_fun.dylib"
elif platform == "win32":
 # Windows...
 library = "quad_eq_fun.dll"

functionName = "quad_eq_fun"

Load DLL
external_lib = ctypes.cdll.LoadLibrary(os.path.join(os.getcwd(), library))

Get needed function as attribute of the library
function = getattr(external_lib, functionName)

Define c classes to be used for inputs and outputs of the Fortran function
INT = ctypes.c_int
DOUBLE = ctypes.c_double
NPointsArrayType = DOUBLE*N

Set argument types for values and pointers
The order should coincide with the order of arguments in the Fortran function
function.argtypes = [ctypes.POINTER(DOUBLE),
 ctypes.POINTER(DOUBLE),
 ctypes.POINTER(DOUBLE),
 ctypes.POINTER(DOUBLE),
 ctypes.POINTER(INT),
 ctypes.POINTER(INT),
 ctypes.POINTER(INT)]

function.restype = None
Define values of the input parameters that will be passed
to the Fortran function
fun_arg_a = DOUBLE(a)
fun_arg_b = DOUBLE(b)
fun_arg_c = DOUBLE(c)
fun_arg_N = INT(N)
fun_array_x = NPointsArrayType(*input_array_x)

out_x1 = DOUBLE() # initialize output variable x1
out_x2 = DOUBLE() # initialize output variable x2
out_flag = INT() # initialize output variable flag
out_array_y = NPointsArrayType() # initialize output array

function(fun_arg_a, fun_arg_b, fun_arg_c, fun_array_x, fun_arg_N,
 out_x1, out_x2, out_array_y, out_flag)

Create output dictionary
out = dict()

The present simulation model is supposed to return sum and absolute
value of difference of the roots and y-values of the function.
The following calculations depend on the value of flag
Check flag values
if out_flag.value==1:
 # two real distinct roots
 # Extract value from the float type of output
 out['root_sum'] = abs(out_x1.value + out_x2.value)
 out['root_diff'] = abs(out_x1.value - out_x2.value)
elif out_flag.value==2:
 # single real root
 out['root_sum'] = abs(2*out_x1.value)
 out['root_diff'] = 0.0
else:
 # two complex roots
 # Sum of roots is a doubled real part
 out['root_sum'] = abs(2*out_x1.value)
 out['root_diff'] = abs(2*out_x2.value)

out['y'] = out_array_y[0:N] # extract values from array type of output

Return output dictionary
return out

3.5 Method check_input_parameters

The purpose of the check_input_parameters method is to ensure that the parameters supplied to the simulation_model method satisfy the model assumptions and/or limitations. Below we provide the default check_input_parameters method of the ComponentModel class.

def check_input_parameters(self, p):
 ""
 Check whether input parameters satisfy the specified boundaries.
 :param p: input parameters of component model
 """
Note that there is no print function used in this example. NRAP-Open-IAM utilizes the python package logging for the functionality needed to provide the user with different kinds of messages related to the performance and setup of the system model. The single argument of the check_input_parameters method is a dictionary of simulation model parameters p, the same dictionary provided to the simulation_model method. Since parameters do not vary in time the method is called only once per simulation. We recommend to use a separate method for time-varying model inputs, with possible (among others) name check_temporal_inputs. The method check_temporal_inputs should be setup to be called for each time step within the simulation_model method of the component. The default check_input_parameters method assumes that the parameters boundaries are defined in the pars_bounds attribute of the ComponentModel class object. If the attribute pars_bounds is not defined by the developer, a message will be printed to the log to indicate this.

The method can be redefined within the class derived from the ComponentModel class. The following code snapshot provides an example of the method modified according to the needs of LookupTableReservoir component class.

```python
def check_input_parameters(self, p):
    """
    Check whether input parameters fall within specified boundaries.
    :param p: input parameters of component model
    :type p: dict
    """
    debug_msgs = [
        'Checking input parameters...',
        'Input parameters ({})'.format(p)]
    for ind in [0, 1]:
        logging.debug(debug_msgs[ind])
    if not self.linked_to_intr_family:
        err_msg = '
            Application cannot proceed further. 
            Lookup Table Reservoir component is
            not linked to any interpolator family.')
```

(continues on next page)
logging.error(err_msg)
raise LinkError(err_msg)

Save interpolators names
if self.intr_names is None:
 self.intr_names = {}
for intr_nm, intr_obj in self._parent.interpolators[self.intr_family].items():
 self.intr_names[intr_obj.index] = intr_nm

For lookup table reservoir component we need to make sure that the
signature created with input parameters coincide with the signature
of one of the interpolators used by component

Create signature based on default parameter values
param_signature = {k: v.value for k, v in self.default_pars.items()}

Check whether there are any parameters not belonging to the signature
for key in p:
 if key not in param_signature:
 msg = 'Parameter {key} not recognized as ', 'a LookupTableReservoir input parameter.'
 logging.warning(msg)

Update default signature with values of input parameters p
param_signature.update(p)

Extract index from updated dictionary
index = int(param_signature.pop('index'))

if index != -2:
 if index not in self.intr_names:
 err_msg = 'Value {} of index parameter does not correspond ', 'to any of the linked interpolators.'
 logging.error(err_msg)
 raise ValueError(err_msg)

else:
 # Check for the same signature among all connected interpolators
 signature_found = False
 for interp in self._parent.interpolators[self.intr_family].values():
 # Compare signature of interpolator with the provided input parameters
 if interp.signature == param_signature:
 signature_found = True
 break

 if not signature_found:
 err_msg = 'Signature of input parameters do not coincide with ', 'signatures of connected interpolators {}.
 logging.error(err_msg)
 raise ValueError(err_msg)

First, the method checks whether the component is linked to the interpolators, needed for the proper execution of the

3.5. Method check_input_parameters
simulation_model method, and only after that checks whether the input parameters satisfy the model requirements. The next example of the check_input_parameters method taken from the MultisegmentedWellbore component class is close to the default one but represents a modified version of the original method and accounts for the varying number of possible (and similar) model parameters.

```python
def check_input_parameters(self, p):
    """
    Check whether input parameters fall within specified boundaries.
    :param p: input parameters of component model
    :type p: dict
    """
    debug_msg = 'Input parameters of component {} are {}'.format(self.name, p)
    logging.debug(debug_msg)
    for key, val in p.items():
        warn_msg = ''.join([
            'Parameter {} of MultisegmentedWellbore component {} ,
            'is out of boundaries.'].format(key, self.name))
        if (key[0:5] == 'shale' and key[-9:] == 'Thickness'):
            if (val < self.pars_bounds['shaleThickness'][0]) or (val > self.pars_bounds['shaleThickness'][1]):
                logging.warning(warn_msg)
                continue
        if (key[0:7] == 'aquifer' and key[-9:] == 'Thickness'):
            if (val < self.pars_bounds['aquiferThickness'][0]) or (val > self.pars_bounds['aquiferThickness'][1]):
                logging.warning(warn_msg)
                continue
        if (key[0:7] == 'logWell' and key[-4:] == 'Perm'):
            if (val < self.pars_bounds['logWellPerm'][0]) or (val > self.pars_bounds['logWellPerm'][1]):
                logging.warning(warn_msg)
                continue
        if (key[0:6] == 'logAqu' and key[-4:] == 'Perm'):
            if ((val < self.pars_bounds['logAquPerm'][0]) or (val > self.pars_bounds['logAquPerm'][1])):
                logging.warning(warn_msg)
                continue
        if (key[0:3] == 'aqu' and key[-18:] == 'BrineResSaturation'):
            if ((val < self.pars_bounds['aquBrineResSaturation'][0]) or (val > self.pars_bounds['aquBrineResSaturation'][1])):
                logging.warning(warn_msg)
                continue
        if key in self.pars_bounds:
            if ((val < self.pars_bounds[key][0]) or (val > self.pars_bounds[key][1])):
                logging.warning(warn_msg)
```

20 Chapter 3. Coding Logistics
3.6 Method reset

The method reset is called once before each simulation. Its purpose is to reset all the needed attributes, parameters, accumulators and observations of the particular component to some initial state.

```python
def reset(self):
    """
    Reset parameters, observations and accumulators.

    Parameters, observations and accumulators are reset to their
    initial/default values at the beginning of each new simulation.
    ""
    pass
```

In the default method of the ComponentModel class there is only one statement: pass. The current default method serves as a placeholder for the method that can be redefined within derived component classes. Due to the inherent multitude of different features possibly needed by component models, it is not practicable to write a method common for all components; so the “proper” implementation of the method is left to the developer. In the current version of the NRAP-Open-IAM, the SystemModel instance method single_step_model sets the values of all accumulators of the system components to zero before each simulation: the accumulators are assumed to accumulate sum-like quantities (e.g., cumulative masses and/or volumes). For some accumulators the initial value of zero is assumed mainly out of convenience. The redefinition of the reset method is needed if, for example, the accumulator is supposed to keep track of product-like quantities and the initial value should be 1, or for some other reason an initial value of zero does not work. Additionally, the reset method can be used for setting other component variables that need to be reinitialized before each simulation. Setting the accumulator or other attribute values within the reset method is straightforward. Referring to the same accumulators we used for the example of the method _init_ above, we replace the pass statement with appropriate statements for this case. Note that we assume that the initial value of accumulator1 is 0, and the initial value of accumulator2 is 1, thus, only the accumulator2 has to be reinitialized within the method.

```python
def reset(self):
    """
    Reset parameters, observations and accumulators.

    Parameters, observations and accumulators are reset to their
    initial/default values at the beginning of each new simulation.
    ""
    self.accumulators['accumulator2'].sim = 1.0
    # self.accumulators['accumulator1'].sim = 0.0
```

3.7 Connecting components

There are many defaults methods of the ComponentModel class that are not meant to be reimplemented within the derived component class. The main purpose of these methods is to provide means to connect the components within the system model and setup the parameters and observations of each component model. By providing the examples illustrating the functionality of the available methods, we want to show the capabilities of NRAP-Open-IAM which might be limited or limit the development of new component models. Knowing what connections can be created between models helps to make sure that the new model is consistent with the available framework and can be merged seamlessly. On the other hand, many of these methods were added or modified based on the feedback of active developers, that is, new development is possible after a justified proposal and review.

Attribute component_models of a SystemModel class object is an ordered dictionary containing references to all
component models involved in the simulation. The order in which the components are arranged in the system model is important and represents the order in which the corresponding simulation_model methods are called during the simulation. Note that the component simulation_model method should be developed in a way that would allow it to be called at each time step provided by system model. After all component models are run for a given time point, the control is returned back to the system model. The instance method reorder_component_models of the SystemModel class changes the order of the components in the system model after they have been added to the container, and can be used to fix the order components models that have been added out of execution order.

```python
def reorder_component_models(self, order):
    """
    Reorder execution order of component models.
    :param order: list of component model names in desired execution order
    :type order: lst(str)
    """
    self.component_models = OrderedDict((k, self.component_models[k]) for k in order)
```

There are many methods of the component model class used to define the connections between the components that:

- determine parameters of the model that the user can control (modify values) and specify observations that the user can analyze;
- determine which of the observations of a given component can provide input parameters of the next component;
- define which of the parameters of a given component model can be defined (calculated) in terms of the parameters of another component model;
- are used either at the script writing stage or are more likely to be used within the class derived from ComponentModel.

3.7.1 Parameters

We start with the description of the methods that allow the addition of parameters and observations to the component models.

```python
ComponentModel.add_par(name, value=None, vary=True, min=None, max=None, expr=None, discrete_vals=[], **kwargs)
```

Add parameter to component model.

Parameters

- `name (str)` – name of parameter
- `value (float)` – Initial parameter value
- `vary (boolean)` – flag indicating whether parameter is deterministic or stochastic (varied); by default parameter is assumed to be varied
- `min (float)` – minimum bound of parameter
- `max (float)` – maximum bound of parameter
- `expr (str)` – mathematical expression used to calculate parameter value
- `discrete_vals ((lst, lst))` – tuple of two array_like defining discrete values and associated probabilities (probabilities are normalized if they do not sum up to 1)
- `kwargs (any)` – additional keyword arguments passed to __init__ method of Parameter class
The `add_par` method can be used to add deterministic or stochastic parameter by utilizing different values of the input argument `vary`. To add deterministic parameter one would use

\[
\text{cm.add_par(name=par_name, value=par_value, vary=False)}
\]

Here, `cm` is a name of variable containing a reference to the `ComponentModel` class instance.

By default the added parameter is assumed to be stochastic, thus, to add stochastic parameter one would use

\[
\text{cm.add_par(name=name, min=min_value, max=max_value, value=value)}
\]

Deterministic parameters of the component models can be accessed by referring to `deterministic_pars` attribute of the component model class instance, while the stochastic parameters of the component are kept in the `pars` attribute. The stochastic parameters are also added to and tracked by the system model to which the component belongs. Similar to the component model, the parameters can also be accessed through the `pars` attribute of the system model. The only difference is that the system model `pars` attribute contain all stochastic parameters of the system, i.e. stochastic parameters of all components.

The next method `add_default_par` is often used in the `__init__` method of the component model class. The primary purpose of this method is to ensure that all parameters of the model are defined during the simulation even when not explicitly defined by the user. This is a convention that all existing component models of NRAP-Open-IAM rely on. If the parameter of a given component model is not defined by the user then the model itself should take care of the default value of the parameter, for example, assigning the value of the parameter not determined by the user within the `simulation_model` method of the derived class.

As mentioned above the common approach to the default parameters is to add them in `__init__` method as follows (the values of the parameters are chosen arbitrarily for illustration)

\[
\text{self.add_default_par('par_a', value=2.71)}
\]
\[
\text{self.add_default_par('par_b', value=3.14)}
\]

Usually the two lines above would be followed by the definition of the component attribute `pars_bounds` which would describe the lower and upper boundaries of each model parameter (see notes above and example below).

\[
\text{Define dictionary of boundaries}
\]
\[
\text{self.pars_bounds = dict()}
\]
\[
\text{self.pars_bounds['par_a'] = [1.0, 15.0]}
\]
\[
\text{self.pars_bounds['par_b'] = [-100.0, 5.0]}
\]

Note that the default value of the parameters can be either on the boundary or inside the interval specified by `pars_bounds`.

3.7. Connecting components
Definition of parameters default values allows utilizing them by other components. Other component models can use the default parameter value by referring to the `default_pars` attribute of the component model class instance. For example,

```python
cm.add_default_par(par_name)
print(cm.default_pars[par_name])
```

3.7.2 Observations

The following methods allows adding observations that will be tracked by the system model and will be available for different kinds of analysis. Component models responses not explicitly added using these methods are ignored and are not available for the processing once the simulation is complete.

ComponentModel.add_obs

Add observation to component model.

Parameters

- **name** *(str)* – base name of observation
- **index** *(str or array-like)* – indices of time points at which observations values are of interest; index is a str('all') if all points should be added, or is a list if only selected point(s) is (are) added. By default, all points are added.
- **sim** *(fl64)* – simulated value of observation
- **weight** *(fl64)* – observation weight
- **value** *(None or array-like)* – measured/initial value of observation; by default, the value is None. value should be a list of length of index, unless it’s None

Note that the method `add_obs` allows adding only scalar observations. The references to the observations of the component models are kept in the identically named attributes `obs` of the component model and system model. If the component model is supposed to return a structured (or “gridded”) observation (array, matrix) then the observation should be added with the method `add_grid_obs`.

ComponentModel.add_grid_obs

Add observation computed on a grid.

Parameters

- **name** *(str)* – observation name
- **constr_type** *(str)* – type of the gridded observation. Possible values: ‘array’, ‘matrix’, and ‘’. The parameter indicates what type of gridded observation, a given component will provide. ‘array’ option means that the returned observation `obs` will be an array-like object and every element can be accessed as `obs[ind]`; ‘matrix’ means that the returned observation is a matrix-like object and every element can be accessed by providing 2 (or 3) indices of elements: either like `obs[ind1][ind2]` or `obs[ind1,ind2]` for 2d case, or `obs[ind1][ind2][ind3]` or `obs[ind1,ind2,ind3]` for 3d case; ‘’ option means that constr_type is not relevant, suitable for defining gridded obs to be linked.
- **coordinates** (*dict of array-like objects*) – x, y (and z) coordinates of the grid associated with the observation; by default, it’s an empty dictionary. In general, coordinates should be a dictionary with keys ‘x’, ‘y’ (and ‘z’). coordinates[key] should be an array-like object for any key in coordinates.

- **output_dir** (*str*) – directory where the observations will be stored as compressed binary files

- **save_type** (*str*) – file format for save of gridded observation, currently supports ‘npz’ (default), ‘csv’, and ‘npy’

- **index** (*str or array-like*) – indices of time points at which observations values are of interest; index is a str(‘all’) if all points should be saved, or is an array-like object if only selected point(s) is (are) to be saved. By default, all points are saved.

- **sim** (*fl64*) – simulated value

- **weight** (*fl64*) – observation weight

- **value** (*fl64*) – measured/initial value of observation

Due to the possibly large size, the structured observations are not tracked by the system model (i.e. not available by reference to `obs[obs_name]` attribute of the system model) but the simulated structured observations are saved in the compressed .npz format files with a filename defined by a pattern: component name, gridded observation name, simulation number, and time index all joined by underscore symbol _ . For example, if the component with name `well` has a structured observation with name `rate` then the file which contains the mentioned observation evaluated at time point with index 10 will be named:

- `well_rate_sim_0_time_10.npz` for a single forward run of a system model and
- `well_rate_sim_1_time_10.npz`, `well_rate_sim_2_time_10.npz`,… for multiple stochastic simulations of a system model.

The reference to the properties of the structured observations are kept in the `grid_obs` attribute of the component model class instance. One can see the names of the gridded observations added to the output of the given component by accessing the mentioned attribute:

```python
cm.add_grid_obs('grid_obs1', constr_type='array')
print(cm.grid_obs.keys())
print(cm.grid_obs['grid_obs1'])
```

If only a single element of the structured (gridded) observation (array) is needed, then method `add_local_obs` should be used. Since in this case the observation is a scalar (not an array) the system model keeps track of the observation.

```python
ComponentModel.add_local_obs(name, grid_obs_name, constr_type, loc_ind, index='all', sim=None, weight=1.0, value=None)
```

Add local observation linked to observation defined on a grid.

The local observation is considered to be an observation of the same component as the original gridded observation and system model. One thing that distinguishes local obs from other observations is that its name should never coincide with the name of any observation returned by a given component.

Parameters

- **name** (*str*) – base name of observation

- **grid_obs_name** (*str*) – name of gridded observation that belongs to the same component.
 It is not necessary for the gridded observation to be created separately. It is only important that the component produces an array-like output with the given name.
• **constr_type** *(str)* – type of the gridded observation. Possible values: ‘array’ and ‘matrix’. The parameter indicates what type of gridded observation, a given component will provide. ‘array’ option means that the returned observation obs will be an array-like object and every element can be accessed as obs[ind]; ‘matrix’ means that the returned observation is a matrix-like object and every element can be accessed by providing 2 (or 3) indices of elements: either like obs[ind1][ind2] or obs[ind1,ind2] for 2d case, or obs[ind1][ind2][ind3] or obs[ind1,ind2,ind3] for 3d case.

• **loc_ind** *(int for array-type observation or tuple of integers for matrix-type observation)* – index of row containing local observation of interest for ‘array’ type of gridded observation, or indices of row and column at which value is located for ‘matrix’ type of gridded observation.

• **index** *(str or array-like)* – indices of time points at which observations values are of interest; index is a str(‘all’) if all points should be added, or is a list if only selected point(s) is (are) added. By default, all points are added.

• **sim** *(fl64)* – simulated value of observation

• **weight** *(fl64)* – observation weight

• **value** *(None or array-like)* – measured/initial value of observation; by default, the value is None. value should be a list of length of index, unless it’s None

Since the local observation is derived from the structured observation, the component model additionally keeps the index (or tuple of indices) of the element in an array (or matrix). In order to get the index of the local observation in the structured observation one has to know the name of the structured observation from which the local observation is derived (name of the structured observation is provided by the given component model) and the name of the local observation assigned by the user. For example,

```python
# Add local observation
cm.add_local_obs(loc_obs_name, grid_obs_name)

# Print the index of the local observation
print(cm.local_obs[grid_obs_name][loc_obs_name])
```

ComponentModel.add_obs_to_be_linked(name, obs_type='scalar', **kwargs)

Add observation to be used as input to some component model.

The method is used when a particular observation of a given component is not necessary of interest for analysis but is needed as an input for one of the subsequent components.

Parameters

- **name** *(str)* – name of observation

- **obs_type** *(str)* – type of observation to be linked. Possible values: ‘scalar’ and ‘grid’. By default, the parameter value is ‘scalar’.

- **kwargs** *(dict)* – optional additional keyword arguments of the Observation or GriddedObservation classes constructors.

If the observation of a given component model is to be used as input for other model it should be specifically added as such with the method add_obs_to_be_linked. For example,
cm.add_obs_to_be_linked(obs_name)

If the observation in addition should be tracked by the system model then it also should be added with the method

```
cm.add_obs(obs_name)  # to be tracked by system model
cm.add_obs_to_be_linked(obs_name) # to be used as input for other component
```

One important thing to mention before we continue with the next methods is that the data (parameters, keyword arguments, observations) passed between models need to have consistent units. There are some assumptions about the units of the data that comes into and out of the component models. So here is a list of units used by the NRAP-Open-IAM.

- Pressure is assumed to be in units of Pascals (Pa).
- Time is assumed to be in days (d).
- Length type parameters (distance, width, etc.) are assumed to be in units of meters (m).
- Fluxes of fluids are assumed to be in units of kilograms per second (kg/s).
- Masses are assumed to be in units of kilograms (kg).
- Viscosities are assumed to be in units of Pascal seconds (Pa s).

3.7.3 Linked parameters and observations

The following methods allow adding component model parameters that depend on other parameters and/or observations of the same or different component model. Method `add_par_linked_to_par` adds a parameter that has the same properties and value as an already defined parameter.

ComponentModel.add_par_linked_to_par(name, parlink)

Add parameter linked to another parameter.

Add parameter that obtains its value from parameter which comes from the same or another component models. The parameter from which the value is taken can be default, deterministic, stochastic or composite.

Parameters

- **name** (str) – name of parameter to be added
- **parlink** (Parameter class object) – ComponentModel parameter

In general, any of the model parameters can be of any allowed type. For example, in one scenario a particular parameter can be setup as stochastic, in another it can be setup as deterministic. Consider an example of the code utilizing the add_par_linked_to_par method. As in the previous examples, the values of the parameters are defined arbitrarily.

```
# Assume we have component model cm1 defined somewhere above in the code
# as instance of Component1 class with name 'cmpnt1'
cm1.add_par('par_1', value=4.5, min=2.0, max=5.0)  # added parameter is stochastic
cm1.add_par('par_2', value=1.8, vary=False)  # added parameter is deterministic
cm1.add_default_par('par_3', value=1.5)  # added parameter is default

# Now assume there is another component model cm2 also defined as
# an instance of Component1 class with name 'cmpnt2'. We also assume that cm2
```

(continues on next page)
have parameters defined as dependent on the parameters of component model cm1
The corresponding dictionary should be used for each type of parameters of
component model cm1
cm2.add_par_linked_to_par('par_1', cm1.pars['par_1'])
cm2.add_par_linked_to_par('par_2', cm1.deterministic_pars['par_2'])

The names of the parameters of component cm2 and linked parameters of component cm1
should not necessary be the same if this is what is intended
cm2.add_par_linked_to_par('par_3', cm1.default_pars['par_4'])
cm2.add_par('par_4', value=2.5) # added parameter is default

Method `add_par_linked_to_obs` adds a parameter that obtains its value from the output of some other component. The observation that the added parameter depends on should be added with the `add_obs_to_be_linked` method.

```python
ComponentModel.add_par_linked_to_obs(name, obslink, obs_type='scalar', **kwargs)
```

Add parameter linked to observation.

Add parameter that obtains its value from observation returned by the same or another component model. The observation has to be observation to be linked.

Parameters

- `name` (str) – name of parameter
- `obslink` (Observation class object) – ComponentModel observation
- `obs_type` (str) – type of observation that the parameter will be linked to. Possible values: ‘scalar’ and ‘grid’. By default, the argument value is ‘scalar’.
- `kwargs` (dict) – additional keyword arguments specifying constr_type and loc_ind for obs_type='grid'. kwargs['constr_type'] is string in ['array','matrix']. kwargs['loc_ind'] is scalar (for ‘array’ constr_type) or tuple (for ‘matrix’ constr_type). Missing dictionary kwargs will lead to exception raised.

Consider the following example on the use of the method.

```python
# Add observation of component cm1 to be used as parameter of component cm2
cm1.add_obs_to_be_linked('obs_1')
# Add parameter of component cm2: parameter name of component cm2 does not
# necessarily coincide with the name of observation returned by component model cm1
cm2.add_par_linked_to_obs('par_1', cm1.linkobs['obs_1'])
```

Since the work of NRAP-Open-IAM is based on the assumption that parameters of the component model are constant in time, the use of method `add_par_linked_to_obs` is appropriate only in situations when the observation that is linked to the parameter does not vary in time.

Method `add_composite_par` adds a parameter whose value is determined by an expression which may contain references to parameters of the same and/or other components.
ComponentModel.add_composite_par(name, expr=None)

Add composite parameter.

We assign composite parameter its value evaluating expression which can contain names of default, deterministic, stochastic or other composite parameters.

Parameters

- **name** *(str)* – name of composite parameter
- **expression** *(str)* – expression for calculating the value of parameter. It has a form: ‘f(par_nm1,par_nm2,par_nm3,...)’

The following piece of code contain several examples utilizing add_composite_par method.

```python
# Assume we have component model cm1 defined somewhere above in the code
# as instance of Component1 class with name 'cmpnt1'
cm1.add_par('par_1', value=4.5, min=2.0, max=5.0)  # added parameter is stochastic
cm1.add_par('par_2', value=1.8, vary=False)  # added parameter is deterministic
cm1.add_default_par('par_3', value=1.5)  # added parameter is default

# Now assume there is another component model cm2 also defined as
# an instance of Component1 class with name 'cmpnt2'.
cm2.add_par_linked_to_par('par_1', value=2.5, min=2.1, max=4.9, vary=True)
cm2.add_par_linked_to_par('par_2', min=2.0, max=5.0, vary=True)

# We define par_3 of component cm2 as a sum
# of the first three parameters of component cm1
cm3.add_composite_par('par_3', expr='cmpnt1.par_1+cmpnt1.par_2+cmpnt1.par_3')

# We define par_4 of component cm2 as a difference
# of the first parameters of component cm1 and component cm2
cm3.add_composite_par('par_4', expr='cmpnt1.par_1-cmpnt2.par_1')
```

Note that the expression for each added parameter directly utilizes the name of the parameter which consists of the parental component name and parameter name as defined during the component setup separated by a dot. It does not require knowing the parameter type (stochastic, deterministic, default). There is a different way to write an expression for composite parameters which utilizes the variables containing references to the corresponding components and names of the parameters used in the expression. For example, line

```python
cm3.add_composite_par('par_3', expr='cmpnt1.par_1+cmpnt1.par_2+cmpnt1.par_3')
```

can be replaced with

```python
cm3.add_composite_par('par_3', expr='+'.join([cm1.pars['par_1'].name, 
                                         cm1.deterministic_pars['par_2'].name, 
                                         cm1.default_pars['par_3'].name]))
```

Then line

```python
cm3.add_composite_par('par_4', expr='cmpnt1.par_1-cmpnt2.par_1')
```

can be replaced with

```python
3.7. Connecting components  29
```
cm3.add_composite_par('par_4', expr='\'.join([cm1.pars['par_1'].name, cm2.pars['par_1'].name]))

This method does not require knowing the name of the parental component but rather the name of the variable that keeps the reference to the corresponding component and the type of parameters involved in the expression for the composite parameter.

The method `add_par_linked_to_composite_obs` is similar to `add_composite_par`, but `add_par_linked_to_composite_obs` can calculate a parameter value as a function of parameters and/or observations. The method `add_composite_par` can only calculate parameters as a function of other parameters.

ComponentModel.add_par_linked_to_composite_obs(name, expr=None)

Add parameter linked to a function of observations and parameters.

We assign a composite observation-linked parameter by evaluating an expression expression containing the names of observations and parameters.

Parameters

- name (str) – name of composite observation-linked parameter
- expression (str) – expression for calculating the value of parameter. It has a form: ‘f(obs_nm1,obs_nm2,obs_nm3,...)’

As noted above for the method `add_par_linked_to_obs`, parameters in NRAP-Open-IAM are assumed to be constant in time. Therefore, the method `add_par_linked_to_composite_obs` is only meant to be used with observations that are constant with time. Any input that varies with time should be provided as a keyword argument, not as a parameter.

The following piece of code contains several examples utilizing the `add_par_linked_to_composite_obs` method.

```python
# Assume we have a component model cm1 defined somewhere above in the code
# as an instance of Component1 class with name 'cmpnt1'. The lines
# below add several observations for this component.
cm1.add_observ('obs_1')
cm1.add_observ('obs_2')
cm1.add_observ('obs_3')

# The observations must also be added to the linkobs dictionary of cm1, cm1.linkobs
cm1.add_observ_to_be_linked('obs_1')
cm1.add_observ_to_be_linked('obs_2')
cm1.add_observ_to_be_linked('obs_3')

# Now assume we have another component model cm2 defined as an instance of
# Component2 class with name 'cmpnt2'. This component will have a parameter
# 'par_1' calculated as a function of the observations of cm1. The function
# is given by the expression expr.
expr = '(cmpnt1.obs_1 + cmpnt1.obs_2) / cmpnt1.obs_3'
cm2.add_par_linked_to_composite_obs('par_1', expr)

# Now assume there is another component model cm3 defined as an instance of
# Component3 class with name 'cmpnt3'. We use this component to demonstrate that
# a composite observation-linked parameter can be calculated with the observations
# of multiple components. First, add the observations of this component.
```
cm3.add_obs('obs_1')
cm3.add_obs('obs_2')
cm3.add_obs('obs_3')

The observations must also be added to the linkobs dictionary of cm3, cm3.linkobs
cm3.add_obs_to_be_linked('obs_1')
cm3.add_obs_to_be_linked('obs_2')
cm3.add_obs_to_be_linked('obs_3')

Now the parameter 'par_2' of cm2 is set as a function of the observations of cm1 # and cm3.
expr = 'cmpnt1.obs_1 + cmpnt1.obs_2 + cmpnt3.obs_1 + cmpnt3.obs_2'
cm2.add_par_linked_to_composite_obs('par_2', expr)

Finally, give cm2 a deterministic parameter 'par_3'. This parameter will be used # in the expression for the composite observation-linked parameter 'par_4' to # demonstrate that the expression can include both parameters and observations.
expr = 'cmpnt2.par_3 / (cmpnt1.obs_3 + cmpnt3.obs_3)'
cm2.add_par_linked_to_composite_obs('par_4', expr)

For a component to have a composite observation-linked parameter (a component dependent on the observations from other components), any components producing observations used in the function need to run prior to the dependent component. To make a component run earlier, it must be added to the system model before another component. Components are run in the order they are added to the system model. In the example shown above cm2 must be added to the system model after cm1 and cm3.

Once a composite observation-linked parameter is set in the manner shown above, it is stored in the ordered dictionary compositeobslinked_pars. For example, the parameter value of 'par_1' for cm2 can be obtained in the following manner. This approach would only return a value after the simulation has run, however. Prior to the simulation, the composite observation-linked parameter would have a value of zero.

After running the simulation, print the 'par_1' value of cm2
par_1_value = cm2.compositeobslinked_pars['par_1'].value
print(par_1_value)

3.7.4 Keyword arguments

We discussed previously that inputs to the component model can be of two main types: constant in time, scalar numerical parameters and (possibly) varying in time model arguments. If the component's simulation_model method requires one or more of the later types, the model arguments have to be added to the component model using one of the methods discussed below. If the argument of the simulation_model method does not change with time: for example, cannot be defined as a parameter of the model but might change from one setup of the component to another, the simplest way to define it is to make it an argument of the constructor method __init__. For example, see the definition above of time_step as both an argument of __init__ and simulation_model methods. Adding of 'time_step' key (and/or 'time_point', 'time_index' keys) to the dictionary attribute model_kwarg of the component tells the system model that these arguments of the component simulation_model method are the same arguments provided by the system model. If the attribute model_kwarg of the component model does not contain keys 'time_step', 'time_point' and 'time_index' the component model will not be aware of the values provided by the system model and will have to utilize the default values provided with the definition of the __init__ method.
Inside code of the __init__ method

```python
self.model_kwargs = {'time_step': 365.25, 'time_point': 365.25}
```

...

```python
# Inside script setting component model
cm = Component1(name='cm1', parent=sm)  # sm is a system model cm belongs to
cm.model_kwargs['time_step'] = 365.25
```

Argument `time_point` is an argument of the component model that changes in time but is defined by the system model. To define the arguments that change in time in a predetermined way, one can use method `add_dynamic_kwarg`.

```python
ComponentModel.add_dynamic_kwarg(name, time_series_data)
```

Add keyword argument which obtains its value from time series array.

Parameters

- `name` *(str)* – name of keyword argument
- `time_series_data` *(list)* – data to be assigned to the keyword argument defined by the system model. It should be possible to obtain the value of `time_point` argument through simple reference, e.g. value(s) at the first time point should be `time_series_data[0]`; value(s) at the second time point should be `time_series_data[1]`. `time_series_data[ind]` can have any type appropriate for a particular component.

The main purpose of this method is to allow writing the scripts and/or tests for a single component in the system model whose arguments otherwise would have to depend on the output of other components. In the code example below, we use the definition of the `Component1` class defined above.

```python
# Create a component
cm = Component1(name='cm1', parent=sm)

# Create an array of ten random real numbers between 1 and 5 that would
# serve as an input for the model method

t_array = 1.0 + 4.0*np.random.rand(10)

# Add dynamic argument of the model method

cm.add_dynamic_kwarg('temp_input1', t_array)
```

To satisfy possible needs of keyword arguments types of model methods, `add_kwarg_linked_to_obs` and `add_kwarg_linked_to_collection` were added to the inventory of `ComponentModel` instance methods. Method `add_kwarg_linked_to_obs` can be used to connect keyword argument of one component to the observation of another component.

```python
ComponentModel.add_kwarg_linked_to_obs(name, obslink, obs_type='scalar', **kwargs)
```

Add keyword argument linked to observation.

Add keyword argument to the component model that obtains its value from the same or another component model observation. The observation should be created as an observation to be linked.

Parameters

- `name` *(str)* – name of keyword parameter

32 Chapter 3. Coding Logistics
• **obs_type** (*str*) – type of observation that the keyword argument will be linked to. Possible values: ‘scalar’ and ‘grid’. By default, the parameter value is ‘scalar’.

• **kwargs** (*dict*) – additional keyword arguments specifying constr_type and loc_ind for obs_type='grid'. Option is added to accommodate the need to request only several of grid points observations. kwargs['constr_type'] is string in ['array','matrix']; kwargs['loc_ind'] is list of scalars (for ‘array’ constr_type) or list of tuples (for ‘matrix’ constr_type). Default empty dictionary kwargs indicates that all data provided by the gridded observation is needed.

• **obslink** (*Observation class or GriddedObservation class object*) – ComponentModel observation

Observation to which keyword arguments are to be linked should be added to the corresponding components (observation provider) as such with `add_obs_to_be_linked` method. Keyword arguments of the `simulation_model` method can be linked to both types of observations in NRAP-Open-IAM: scalar and gridded/structured. Depending on the type of the linked observation a corresponding set of arguments should be used. We consider several examples illustrating the possible use of this method.

```python
# Suppose that component cm1 simulation_model method returns observation with name obs1
# that can serve as a keyword argument for the component cm2.
# Add observation of component cm1 to be linked to the argument
# of the second component. Note that use of the obs_type argument is not
# necessary when observation is scalar. Here, it is used to emphasize this fact
cm1.add_obs_to_be_linked('obs1', obs_type='scalar')

# Add keyword argument of cm2 linked to the observation of component cm1
cm2.add_kwarg_linked_to_obs('input1', cm1.linkobs('obs1'))
```

As illustrated in the example the names of the keyword argument and of the observation provided as input should not necessary be the same. The next example illustrates the situation when the keyword argument is linked to the gridded observation. Keyword argument can be linked to any part of the gridded observation. Recall that the gridded observation should be returned either as an array or matrix:

```python
# Suppose that component cm1 simulation_model method returns gridded observation
# with name grid_obs1 that can serve as a keyword argument for the components
# cm2, cm3 and cm4 linked to the different parts of the gridded observation
# Add observation of component cm1 to be linked to the argument
# of the second component. Note that use of the obs_type argument
# is not necessary when observation is scalar.
# Here, it is used to emphasize the type of observation
cm1.add_obs_to_be_linked('grid_obs1', obs_type='grid')

# It is a responsibility of the user to make sure that the returned
# observation types are compatible with the format of keyword arguments
# accepted by the subsequent components.
# Add keyword argument of cm2 linked to the observation of component cm1
cm2.add_kwarg_linked_to_obs('input1', cm1.linkobs('grid_obs1'))

# Add keyword argument of cm3 linked to the several elements
# of observation of component cm1
cm3.add_kwarg_linked_to_obs('input1', cm1.linkobs('grid_obs1'),
                             constr_type='array', loc_ind=list(range(10)))
```

(continues on next page)
Add keyword argument of cm4 linked to a single element
of observation of component cm1
```
cm4.add_kwarg_linked_to_obs('input2', cmlinkobs('grid_obs1'),
                          constr_type='array', loc_ind=[0])
```

There are differences in three uses of the method `add_kwarg_linked_to_obs` that we want to discuss next. The key-
word argument `input1` of the component `cm2` model method is linked to the gridded observation with name `grid_obs1`
provided by component `cm1`. We do not use any extra arguments of the method which shows that all observation data
provided by `cm1` is copied to the keyword argument. The keyword argument `input1` of the component `cm3` is linked
only to the part of the gridded observation with name `grid_obs1` provided by component `cm1`. We indicate this by
specifying the list of indices of observation array at which it should be provided to the keyword argument `input1`. Note
that both components `cm2` and `cm3` should be able to accept the array-like keyword argument `input1`. With component
`cm4` the situation is slightly different. Its keyword argument `input2` is also linked to the gridded observation `grid_obs1`
but it requests a single value of the gridded observation indicated by a single index (in the example it is 0) of the element
in observation array. Note that although there is only a single index it still has to be provided in the list format. The value
of the observation array will be passed as a scalar variable rather than array-like type as it is done for components `cm2`
and `cm3`.

The following method is used to add a keyword argument created from a collection of scalar observations provided by
the same or different components. Essentially, the observations are combined into one structure (collection) and passed
in this form to the corresponding component.

```
ComponentModel.add_kwarg_linked_to_collection(name, obslink_list)
```

Add keyword argument linked to list of observations.

Parameters

- `name (str)` – name of keyword parameter
- `obslink_list (list of Observation class objects)` – list of ComponentModel ob-

The example below illustrates the use of the method for linking to the collection of similar observations.

```
# Suppose that 5 components references to which are stored in a list variable sup_cm
# can return an observation with name obs1
# Add observation of components to be used to create a collection of observations
for ind in range(5):
    # Option obs_type='scalar' can be omitted
    sup_cm[ind].add_obs_to_be_linked('obs1', obs_type='scalar')

# Create a list of references to just created linked observations
obs_collection = [sup_cm[ind].linkobs('grid_obs1') for ind in range(5)]

# Add keyword argument of cm2 linked to the collection
```

The method is used to link to the collection of scalar observations. We emphasize this by specifying option `obs_type`,
non-mandatory for scalar observations. The following simple example illustrates the situation when the collection is
created from not necessarily similar observations.
Suppose that component cm1 simulation_model method returns observation with name obs1
Add observation obs1 of component cm1 to be used to create
a collection of observations. Note that we omit option obs_type='scalar'
since it is not needed
cm1.add_obs_to_be_linked('obs1')

Suppose that component cm2 simulation_model method returns observation with name obs2
Add observation obs2 of component cm2 to be used to create
a collection of observations. Note that we omit option obs_type='scalar'
since it is not needed
cm2.add_obs_to_be_linked('obs2')

Create a list of references to just created linked observations
obs_collection = [cm1.linkobs('obs1'), cm2.linkobs('obs2')]
Add keyword argument input1 of component cm3
cm3.add_kwarg_linked_to_collection('input1', obs_collection)

In this example we assume that the simulation_model method of component cm3 would accept an argument input1 which in this case is a 2-element array.
4.1 Docstrings

Since the integration of the component based on simulation model into the NRAP-Open-IAM framework will not necessarily be performed by the developers who initially developed the model, it is necessary for the model developers to provide some level of details covering the possible use of the model. The description of the code and logistics behind the model is provided in comments and docstrings written within the code. Docstrings are a “special form” of comments. They usually occur as the first statement in a class, method or function description. We strongly recommend to include docstrings in all modules written for the NRAP-Open-IAM tool. Information provided in docstrings is used to create the components description section in the NRAP-Open-IAM user’s manual. This means that docstrings describing the components should follow the specific format. For examples of the desired format, the developer should consult the available components code. Here, we consider the docstring for the CementedWellbore component class which is the first statement one would see after opening a Python file with the component code. This type of docstrings is referred to as a module string. The pieces of code considered above also contain docstrings.

""
The Cemented Wellbore component model is based on a multiphase well leakage model implemented in the NRAP-IAM-CS, :cite:`HARP2016150`. The model is built off detailed full-physics Finite Element Heat and Mass (FEHM) simulations, :cite:`Zyvoloski2007`. The FEHM transfer simulations are three-dimensional (3-D), multiphase solutions of heat and mass transfer of water and supercritical, liquid, and gas |CO2|. After the simulations are completed, the surrogate model is built based on the key input parameters and corresponding output parameters. The approximate (surrogate) model is represented by polynomials in terms of input parameters that then can be sampled to estimate leakage rate for wells. Early development work can be found in :cite:`RN1606`.

When using the control file interface with more than 3 shale layers, the *ThiefZone* keyword can be used to specify the thief zone aquifer and the *LeakTo* keyword can be specified to name the upper aquifer. These values will default to 'aquifer1' and 'aquifer2' respectively.

Component model input definitions:

* **logWellPerm** [\(|\text{log10} \ |m^2|\)] (-13.95 to -10.1) - logarithm of wellbore permeability (default -13).

* **logThiefPerm** [\(|\text{log10} \ |m^2|\)] (-13.995 to -12) - logarithm of thief zone permeability (default -12).

"""
wellRadius [m] (0.025 to 0.25) - radius of the wellbore (default 0.05 m).

initPressure [Pa] (1.0e+5 to 5.0e+7) - initial pressure at the base of the wellbore (default 2.0e+7 Pa, or 20 MPa). *From linked component.*

wellDepth [m] (960 to 3200) - depth in meters from ground surface to top of reservoir (default 1500 m). *Linked to Stratigraphy.*

depthRatio [-] (0.3 to 0.7) - fraction of well depth to the center of the thief zone from the top of the reservoir (default 0.5). *Linked to Stratigraphy.*

The possible outputs from the Cemented Wellbore component are leakage rates of |CO2| and brine to aquifer, thief zone and atmosphere. The names of the observations are of the form:

CO2_aquifer1, **CO2_aquifer2**, **CO2_atm** [kg/s] - |CO2| leakage rates.

brine_aquifer1, **brine_aquifer2**, **brine_atm** [kg/s] - for brine leakage rates.

mass_CO2_aquifer1, **mass_CO2_aquifer2** [kg] - mass of |CO2| leaked into aquifers.

In this example of a module docstring, the first part of docstring is devoted to the general description of the component, including references for users interested in additional details about the model, and details covering the use of model. The second and the most important part provides the description of all parameters of the model, including the names, short descriptions and ranges. The final part of docstring contains the names of all possible observations of the simulation_model method. When this docstring is compiled as part of the user’s guide it looks different from above and is formatted according to the specifications used inside the docstring. Below is the example of how the CementedWellbore module docstring will be compiled for the document.

Cemented Wellbore Component Docstring Output

The Cemented Wellbore component model is based on a multiphase well leakage model implemented in the NRAP-IAM-CS, [2]. The model is built off detailed full-physics Finite Element Heat and Mass (FEHM) simulations, [8]. The FEHM simulations are three-dimensional (3-D), multiphase solutions of heat and mass transfer of water and super-critical, liquid, and gas CO2. After the simulations are completed, the surrogate model is built based on the key input parameters and corresponding output parameters. The approximate (surrogate) model is represented by polynomials in terms of input parameters that then can be sampled to estimate leakage rate for wells. Early development work can be found in [3].

When using the control file interface with more than 3 shale layers, the ThiefZone keyword can be used to specify the thief zone aquifer and the LeakTo keyword can be specified to name the upper aquifer. These values will default to aquifer1 and aquifer2, respectively, if are not provided by user. In the FEHM simulations used to create the surrogate model some of the stratigraphy layers were setup with a fixed thickness. In particular, shale above aquifer had thickness 11.2 m; aquifer and thief zone to which leakage was simulated were set to have thicknesses 19.2 m and 22.4 m, respectively; and reservoir had thickness of 51.2 m.

Component model input definitions:
- **logWellPerm** \([\log_{10} m^2]\) (-13.95 to -10.1) - logarithm of wellbore permeability (default: -13)
- **logThiefPerm** \([\log_{10} m^2]\) (-13.9991 to -12.00035) - logarithm of thief zone permeability (default: -12.2)
- **wellRadius** \([m]\) (0.025 to 0.25) - radius of the wellbore (default: 0.05)
- **initPressure** \([Pa]\) (1.0e+5 to 5.0e+7) - initial pressure at the base of the wellbore (default: 2.0e+7 Pa, or 20 MPa); from linked component
- **wellDepth** \([m]\) (960 to 3196.8) - depth in meters from ground surface to top of reservoir (default: 1500); linked to Stratigraphy
- **depthRatio** [-] (0.30044 to 0.69985) - fraction of well depth to the center of the thief zone from the top of the reservoir (default: 0.5); linked to Stratigraphy.

Temporal inputs of the Cemented Wellbore component are not provided directly to the component model method but rather are calculated from the current and several past values of pressure and CO\(_2\) saturation. The calculated temporal inputs are then checked against the boundary assumptions of the underlying reduced order model. The Cemented Wellbore component model temporal inputs are:

- **deltaP** \([Pa]\) (105891.5 to 9326181.69) - difference between the current and initial pressure at the wellbore
- **pressurePrime** \([Pa/s]\) (-6675.03 to 2986.7) - first pressure derivative
- **pressureDPrime** \([Pa/s^2]\) (-111.265 to 10.806) - second pressure derivative
- **saturation** [-] (0.001 to 1.0) - CO\(_2\) saturation at the wellbore
- **saturationPrime** \([1/s]\) (-4.290e-7 to 1.117e-3) - first CO\(_2\) saturation derivative
- **saturationDPrime** \([1/s^2]\) (-6.923e-6 to 1.176e-6) - second CO\(_2\) saturation derivative.

The possible outputs from the Cemented Wellbore component are leakage rates of CO\(_2\) and brine to aquifer, thief zone and atmosphere. The names of the observations are of the form:

- **CO2_aquifer1**, **CO2_aquifer2**, **CO2_atm** \([kg/s]\) - CO\(_2\) leakage rates
- **brine_aquifer1**, **brine_aquifer2**, **brine_atm** \([kg/s]\) - brine leakage rates
- **mass_CO2_aquifer1**, **mass_CO2_aquifer2** \([kg]\) - mass of CO\(_2\) leaked into aquifers.

For control file examples using the Cemented Wellbore component, see *ControlFile_ex1a* to *ControlFile_ex1b*, *ControlFile_ex5*, *ControlFile_ex10*, *ControlFile_ex31e*, and *ControlFile_ex56g*. For script examples, see *iam_sys_reservoir_cmwell.py* and *iam_sys_lutstrata_reservoir_cmwell.py*.

Since we utilize Sphinx for the compilation of the user’s guide, all module docstrings provided with the component code have to satisfy the reStructuredText (reST) format that Sphinx relies on. The general docstrings conventions are described in PEP 257, the Python docstrings guide. The main difference between comments and docstrings is that the former explains what a given section of code is doing, while the latter describes how a particular method can be used.
INTRODUCTION TO GIT

5.1 What is Git?

Git is one of the most often used version control systems in the world. The main benefits and features provided for developers employing the version control system are the following:

- system provides means for developers to keep track of code changes,
- it allows developers to see a history of changes, to work on the same code pieces at the same time, to isolate their code through branching, merge code from different branches,
- helps developers see and resolve conflicts on code merges, to revert their changes to a previous state, to merge only selected changes.

Git is an example of what is called a Distributed Version Control System: each developer has a copy of the whole repository on their computer and can see the entire history of changes. Git is also cross-platform which makes it useful when developers are working with different OSs. Developers can divide their work between different branches depending on different priorities. Developers can create experimental features and revert the changes when something goes wrong.

The NRAP-Open-IAM project is hosted at a public repository located at https://gitlab.com/NRAP/OpenIAM. GitLab is a web-based Git-repository manager with wiki and issue-tracking features, using an open-source license. There is also the NRAP-Open-IAM development repository which is private and open only to the members of the development group. The master branch of the development repository NRAP-Open-IAM code is protected. Any new code development is done on separate branches and goes through a review process before merging with the master branch. It ensures that new code does not break existing features and is properly documented and tested. A merge request is approved when the code is complete and ready to be part of the master branch.

In order to start working with the NRAP-Open-IAM the developer should register on https://gitlab.com and provide the user name to be added. Once developer has registered, the code can be downloaded in a compressed format from GitLab. However, the compressed file will only contain the source code; the git repository files including revision history will not be included. To utilize Git during development, the repository should be cloned with the command

```
git clone https://gitlab.com/NRAP/OpenIAM
```

Note that the command uses address for NRAP-Open-IAM repository open for public. The command creates a directory named `OpenIAM` (at the current local file system location), initializes a .git directory inside it, pulls down all the data for that repository, and checks out a working copy of the latest version.

If the clone of the repository is needed in a different location, e.g., folder with name `new_NRAPOpenIAM_location`, then the following command should be used:

```
git clone https://gitlab.com/NRAP/OpenIAM new_NRAPOpenIAM_location
```
This command does the same thing as the previous one, but the target directory is now called `new_NRAPOpenIAM_location`.

The installation of Git on the local computer depends on the operating system. The current NRAP-Open-IAM developers use the following Git management systems:

- **Windows**: Git installed with Cygwin, Git Bash
- **Linux, Mac**: Git might already be installed locally.

If Git is not available by default, it is worth checking the following sources: for Mac https://git-scm.com/download/gui/mac, and for Linux https://git-scm.com/download/gui/linux. Additional Git clients compatible with Windows operating systems can be found at https://git-scm.com/download/gui/windows.

Comprehensive book on Git which includes more details that can be covered in this guide is available as an open-source project at https://git-scm.com/book/en/v2. The website https://gitlab.com provides an introduction material on use of GitLab and Git in general.

5.2 Most frequently used Git commands

As the name of the current section suggests we provide a list of the most frequently used commands in Table 1.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get Help</td>
<td></td>
</tr>
<tr>
<td><code>$ git help</code></td>
<td>Get help on git.</td>
</tr>
<tr>
<td><code>$ git help <command></code> or <code>$ git <command> -h</code></td>
<td>Get help on any git command.</td>
</tr>
<tr>
<td>Configure</td>
<td></td>
</tr>
<tr>
<td><code>$ git config --global user.name <name></code></td>
<td>Set the name the developer wants to be attached to the commits.</td>
</tr>
<tr>
<td><code>$ git config --global user.email <email></code></td>
<td>Set the email the developer wants to be attached to the commits.</td>
</tr>
<tr>
<td><code>$ git config --list</code></td>
<td>List git configuration settings.</td>
</tr>
<tr>
<td>Create and Clone</td>
<td></td>
</tr>
<tr>
<td><code>$ git init <new-repository></code></td>
<td>Create a new local repository.</td>
</tr>
<tr>
<td><code>$ git clone <url></code></td>
<td>Clone an existing repository.</td>
</tr>
<tr>
<td>Keep Track of Changes</td>
<td></td>
</tr>
<tr>
<td><code>$ git status</code></td>
<td>List all new and modified files in the working directory.</td>
</tr>
<tr>
<td><code>$ git diff</code></td>
<td>Show not yet staged differences in the tracked files.</td>
</tr>
<tr>
<td><code>$ git diff --staged</code></td>
<td>Show differences between staged and committed version of files.</td>
</tr>
<tr>
<td><code>$ git add <file or dir></code></td>
<td>Stage <code><file></code> or <code><dir></code> (take a snapshot of the content) in preparation for commit or stash.</td>
</tr>
<tr>
<td><code>$ git add -p <file></code></td>
<td>Stage selected changes in <code><file></code>.</td>
</tr>
<tr>
<td><code>$ git add -A</code></td>
<td>Stage all changes (new untracked, modified tracked and deleted files) in the working directory.</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>$git add .</code></td>
<td>Stage all new untracked and modified tracked (but not deleted files) in the working directory.</td>
</tr>
<tr>
<td><code>$git add -u</code></td>
<td>Stage all modified tracked and not deleted files in the working directory.</td>
</tr>
<tr>
<td><code>$git reset HEAD <file></code></td>
<td>Unstage <file> but preserve its content.</td>
</tr>
<tr>
<td><code>$git checkout -- <file></code></td>
<td>Revert the convert of <file> to the last commit version.</td>
</tr>
<tr>
<td><code>$git commit -m <commit-message></code></td>
<td>Record (commit) previously staged changes in version history.</td>
</tr>
<tr>
<td><code>$git commit -a</code></td>
<td>Commit all changes in tracked files (without staging step).</td>
</tr>
<tr>
<td><code>$git commit --amend</code></td>
<td>Change the last commit.</td>
</tr>
<tr>
<td>Review Commit History</td>
<td></td>
</tr>
<tr>
<td><code>$git log</code></td>
<td>Show all commits starting with the most recent.</td>
</tr>
<tr>
<td><code>$git log -p <file></code></td>
<td>Show changes over time for a given <file>.</td>
</tr>
<tr>
<td><code>$git blame <file></code></td>
<td>Show who changed what and when in a given <file>.</td>
</tr>
<tr>
<td><code>$git diff <branch1>...<branch2></code></td>
<td>Show differences in the content of two branches.</td>
</tr>
<tr>
<td>Create a Branch</td>
<td></td>
</tr>
<tr>
<td><code>$git branch</code></td>
<td>Show all local branches in the current repository.</td>
</tr>
<tr>
<td><code>$git branch -av</code></td>
<td>Show all existing branches with some extra information.</td>
</tr>
<tr>
<td><code>$git branch <new-branch-name></code></td>
<td>Create a new branch based on the current branch.</td>
</tr>
<tr>
<td><code>$git branch -d <branch></code></td>
<td>Delete fully merged <branch>.</td>
</tr>
<tr>
<td><code>$git checkout <branch></code></td>
<td>Switch to different <branch>.</td>
</tr>
<tr>
<td>Update</td>
<td></td>
</tr>
<tr>
<td><code>$git remote -v</code></td>
<td>Show all currently configured remotes.</td>
</tr>
<tr>
<td><code>$git remote show <name-of-remote></code></td>
<td>Show information about a remote.</td>
</tr>
<tr>
<td><code>$git fetch <name-of-remote></code></td>
<td>Download all changes from the <name-of-remote> branch but do not integrate them into the local branch.</td>
</tr>
<tr>
<td><code>$git pull <name-of-remote> <branch></code></td>
<td>Download all changes from the <name-of-remote> branch and integrate/merge them into the local <branch>.</td>
</tr>
<tr>
<td><code>$git push <name-of-remote> <branch></code></td>
<td>Publish local changes from <branch> to the <name-of-remote>.</td>
</tr>
<tr>
<td><code>$git merge <branch></code></td>
<td>Merge <branch> to the current local branch.</td>
</tr>
<tr>
<td><code>$git rebase <branch></code></td>
<td>Rebase the current local branch onto <branch>.</td>
</tr>
<tr>
<td><code>$git rebase --continue</code></td>
<td>Continue a rebase after resolving conflicts.</td>
</tr>
<tr>
<td>Save Fragments</td>
<td></td>
</tr>
<tr>
<td><code>$git stash</code> or <code>$git stash -m <stash-entry-message></code></td>
<td>Record the current state of the working directory and go back to the clean working directory.</td>
</tr>
<tr>
<td><code>$git stash apply</code></td>
<td>Restore the most recently stashed files.</td>
</tr>
<tr>
<td><code>$git stash list</code></td>
<td>List the currently available stash entries.</td>
</tr>
<tr>
<td><code>$git stash clear</code></td>
<td>Remove all the stash entries.</td>
</tr>
</tbody>
</table>
6.1 Tests

Tests and examples can originate from the same process in development but they fulfill very different roles. Tests are the integral part of the code development and QA process. In general, tests are not for the users application. There are many types of tests designed for specific purposes at the different stages of the code development. At this point, the test suite of NRAP-Open-IAM is made up of several types of tests: unit tests (tests of single components), feature tests (particular functionality testing), integration tests (whole system model tests) and installation (setup) tests. Installation test checks user’s Python environment and tool functionality work by starting all unit, feature and integration tests. Each component model distributed as part of NRAP-Open-IAM has at least one test in the test suite meant to check the observation values against expected results. We rely on unittest, a Python standard library, to facilitate test writing and execution. It is considered a good practice to run a test suite after each update of the code to make sure that changes do not cause unexpected changes in the output. An approach consistent with the code testing practices of NRAP-Open-IAM development team is described in [5]. Here, we state the most important rules that should be followed with all the new development. Each test should be written for testing a particular feature or new component. The test should be fast since with every major update the new functionality should be tested which increases the total number of tests to be run. The NRAP-Open-IAM tests are located in the file iam_test.py in the test folder. Below we provide an example of the test written for a component utilizing a Fortran library calculating the roots of the quadratic equation. This component model method was described in detail in Chapter Coding Logistics. Recall that the model method calculates the absolute values of the sum and difference of two roots and values of the quadratic function for entered coefficients and x-values. We show the test which would check the solutions of the two quadratic equations - one with both real roots and another one with complex roots - against the known solutions. We create a test for the component as a method of a ExampleTests class derived from unittest.TestCase class. Note that we do not write a separate component class but rather utilize the available base class ComponentModel and create an instance of the class with model method specified by quad_eq_model (defined above in Chapter Coding Logistics). The example provided below can be found in the subfolder scripts of folder examples in the file iam_simple_models.py.

```python
class ExampleTests(unittest.TestCase):

    def test_quad_model(self):
        """
        Test work of quadratic model function and corresponding fortran library.
        """

        # Create system model
        sm = SystemModel()

        # Add component model with model function utilizing the fortran library
        # calculating the roots of quadratic equation
        qmc = sm.add_component_model('quad', model=quad_eq_model)
```

(continues on next page)
Add parameters of qmc component
qmc.add_par('a', value=2.0)
qmc.add_par('b', value=2.0)
qmc.add_par('c', value=-12.0)

Add observations of qmc component
qmc.add_obs('root_sum')
qmc.add_obs('root_diff')

Run forward simulation
sm.forward()

True roots for the defined a, b, c coefficients are -3 and 2.
Thus, absolute values of roots sum and difference are 1 and 5.
true_vals = [1.0, 5.0]

Get simulated values of the observations
sim_vals = [sm.obs['quad.root_sum'].sim, sm.obs['quad.root_diff'].sim]

Compare true and simulated values
for tv, sv in zip(true_vals, sim_vals):
 self.assertTrue(abs((tv-sv)) < 0.001,
 'The result is {} but should be {}'.format(sv,tv))

Check model output for complex roots
Change values of the component parameters
qmc.pars['a'].value = 1.0
qmc.pars['b'].value = -4.0
qmc.pars['c'].value = 13.0

Run forward simulation
sm.forward()

True roots for the defined a, b, c coefficients are 2+3i and 2-3i.
Thus, absolute values of roots sum and difference are 4 and 6.
true_vals = [4.0, 6.0]

Check results
for tv, sv in zip(true_vals, sim_vals):
 self.assertTrue(abs((tv-sv)) < 0.001,
 'The result is {} but should be {}'.format(sv,tv))

return

In order to run the test one can use the following script:

```python
# Setup test runner
runner = unittest.TextTestRunner(verbosity=2, stream=sys.stderr)
# Create a test suite to which tests can be added
test_suite = unittest.TestSuite()
# Add corresponding test(s)
test_suite.addTest(ExampleTests('test_quad_model'))
# Execute added tests
runner.run(test_suite)
```

A test runner is responsible for the execution of tests and returns the outcome to the user. Test method name must
start with word test: in our example the name of the test is test_quad_model. It signals the test runner which of
the methods should be run. Additionally, each of the tests should contain the assertion statement involving one of the
following:

- `assertEqual()` to compare the obtained results versus the expected ones; or
- `assertTrue()` or `assertFalse()` to verify a particular condition; or
- `assertRaises()` to check whether a specific exception gets raised.

There are other available options (e.g., see unittest documentation https://docs.python.org/3.6/library/unittest.html)
that can be used for specific checks. For example, the code

```
for tv, sv in zip(true_vals, sim_vals):
    self.assertTrue(abs((tv-sv)) < 0.001,
                   'The result is {} but should be {}'.format(sv,tv))
```

can be replaced with

```
for tv, sv in zip(true_vals, sim_vals):
    self.assertAlmostEqual(tv, sv, 2,
                        'The result is {} but should be {}'.format(sv,tv))
```

In the last code snapshot, the “2” argument in the `assertAlmostEqual` indicates the number of places to which the
difference of two values is rounded before comparison with zero.

At the final stages of the development of a new component the component’s test should be written and made available
as part of the NRAP-Open-IAM test suite.

6.2 Examples

Integration of any component to the NRAP-Open-IAM framework involves not only the development of the tests but
also the creation of examples illustrating the utility and capabilities of the new component. Examples are written to
show users how the component code works and how to interact with it. Ideally, examples should show off all of the
major features of the new development. Writing an example starts with a basic description of the scenario. It helps to
start with understanding which additional components (if any) should be utilized. The NRAP-Open-IAM framework
allows running the system model with a single component included by utilizing `add_dynamic_kwarg`
method of the `ComponentModel`. If the work of the component can be shown without utilizing other components, it makes sense to
think whether the additional scenarios, where the component can be linked to other component either as a source of
input or output, can be created. The information provided in the section Connecting components in Chapter Coding
Logistics can be very useful here. The examples illustrating work of the components currently available as part of
the NRAP-Open-IAM can be found in the `examples/scripts` folder of the tool distribution. Examples often utilize
the methods for adding and creating component parameters and observations and connecting the components within a
given system model. In general, most examples consist of the following steps:

- setup system model: simulation time, time step size or number of time points;
- add component models needed in the scenario;
- add system and components parameters and observations;
- create connections between components through models input/output using appropriate linking methods;
- run a chosen type of analysis: forward simulation, multiple stochastic simulations (Latin Hypercube sampling
 or Monte Carlo), parameter studies;
- collect observations from the system model;
- post-process the analysis results (if/as needed);
• plot or print the results.

The example files developed for the all components available within the NRAP-Open-IAM tool can be found in the examples/scripts folder of the tool distribution. It is strongly encouraged that all example files developed for the tool follow the same naming convention: the file names should start with iam_ followed either by the list of components used for a specific scenario and/or functionality of the tool featured in the example. The following code illustrates an example of the system model containing two linked component models available in NRAP-Open-IAM: reservoir model and cemented wellbore model. Some of the components parameters are deterministic, some are stochastic, some are composite or linked to other parameters. Keyword arguments of the wellbore component (pressure and CO₂ saturation at the bottom of the well) are obtained from the observations of the reservoir component. Leakage rates of two fluids (CO₂ and brine) are calculated and shown on the produced figures. The name of the file containing the example script is iam_sys_reservoir_cmwell.py in the folder examples/scripts.

```python
import sys, os
import matplotlib.pyplot as plt
import numpy as np

sys.path.insert(0, os.sep.join(['..', '..', 'source']))
from openiam import SystemModel, SimpleReservoir, CementedWellbore

if __name__ == '__main__':
    # Create system model
    num_years = 50.
    time_array = 365.25*np.arange(0.0, num_years+1)
    sm_model_kwars = {'time_array': time_array}  # time is given in days
    sm = SystemModel(model_kwargs=sm_model_kwars)

    # Add reservoir component
    sres = sm.add_component_model_object(SimpleReservoir(name='sres', parent=sm))

    # Add parameters of reservoir component model
    sres.add_par('numberOfShaleLayers', value=3, vary=False)
    sres.add_par('shale1Thickness', min=500.0, max=550., value=525.0)
    sres.add_par('shale2Thickness', min=450.0, max=500., value=475.0)
    sres.add_par('shale3Thickness', value=11.2, vary=False)
    sres.add_par('aquifer1Thickness', value=22.4, vary=False)
    sres.add_par('aquifer2Thickness', value=19.2, vary=False)
    sres.add_par('reservoirThickness', value=51.2, vary=False)

    # Add observations of reservoir component model
    sres.add_obs_to_be_linked('pressure')
    sres.add_obs_to_be_linked('CO2saturation')

    # Add cemented wellbore component
    cw = sm.add_component_model_object(CementedWellbore(name='cw', parent=sm))

    # Add parameters of cemented wellbore component
    cw.add_par('logWellPerm', min=-13.9, max=-12.0, value=-12.0)

    # Add keyword arguments of the cemented wellbore component model
    cw.add_kwarg_linked_to_obs('pressure', sres.linkobs['pressure'])
    cw.add_kwarg_linked_to_obs('CO2saturation', sres.linkobs['CO2saturation'])

    # Add composite parameters of cemented wellbore component
```

(continues on next page)
Here, we illustrate two ways to define expressions for composite parameters

One way

cw.add_composite_par('wellDepth', expr=sres.pars['shale1Thickness'].name +
 '+sres.pars['shale2Thickness'].name +
 '+sres.deterministic_pars['shale3Thickness'].name +
 '+sres.deterministic_pars['aquifer1Thickness'].name +
 '+sres.deterministic_pars['aquifer2Thickness'].name)

Second shorter (and more explicit) way

cw.add_composite_par('depthRatio',
 expr=('sres.shale2Thickness+sres.shale3Thickness +
 sres.aquifer2Thickness + sres.aquifer1Thickness/2)/cw.wellDepth)

cw.add_composite_par('initPressure',
 expr='sres.datumPressure + cw.wellDepth*cw.g*sres.brineDensity')

Add observations of the cemented wellbore component

- cw.add_obs('CO2_aquifer1')
- cw.add_obs('CO2_aquifer2')
- cw.add_obs('brine_aquifer1')
- cw.add_obs('brine_aquifer2')

Run forward simulation

sm.forward()

Collect observations

- CO2_leakrates_aq1 = sm.collect_observations_as_time_series(cw, 'CO2_aquifer1')
- CO2_leakrates_aq2 = sm.collect_observations_as_time_series(cw, 'CO2_aquifer2')
- brine_leakrates_aq1 = sm.collect_observations_as_time_series(cw, 'brine_aquifer1')
- brine_leakrates_aq2 = sm.collect_observations_as_time_series(cw, 'brine_aquifer2')

Print results: CO2/brine leakage rates and pressure/saturation at the well

print('CO2 leakage rates to aquifer 1: ', CO2_leakrates_aq1, sep='\n')
print('CO2 leakage rates to aquifer 2: ', CO2_leakrates_aq2, sep='\n')
print('Brine leakage rates to aquifer 1: ', brine_leakrates_aq1, sep='\n')
print('Brine leakage rates to aquifer 2: ', brine_leakrates_aq2, sep='\n')

Plot CO2 and brine leakage rates along the wellbore

plt.figure(1)
plt.plot(sm.time_array/365.25, CO2_leakrates_aq1, color='blue', linewidth=2, label='aquifer 1')
plt.plot(sm.time_array/365.25, CO2_leakrates_aq2, color='red', linewidth=2, label='aquifer 2')
plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
plt.legend()
plt.xlabel('Time, t [years]')
plt.ylabel('Leakage rates, q [kg/s]')
plt.title(r'Leakage of CO$_2$ to aquifer 1 and aquifer 2')

plt.figure(2)
plt.plot(sm.time_array/365.25, brine_leakrates_aq1, color='blue', linewidth=2, label='aquifer 1')
plt.plot(sm.time_array/365.25, brine_leakrates_aq2, color='red', linewidth=2, label='aquifer 2')
plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
plt.legend()
plt.xlabel('Time, t [years]
plt.ylabel('Leakage rates, q [kg/s]
plt.title('Leakage of brine to aquifer 1 and aquifer 2')
plt.show()

openiam.base.CementedWellbore, 38
INDEX

A
add_composite_par() (openiam.base.ComponentModel method), 28
add_default_par() (openiam.base.ComponentModel method), 23
add_dynamic_kwarg() (openiam.base.ComponentModel method), 32
add_grid_obs() (openiam.base.ComponentModel method), 24
add_kwarg_linked_to_collection() (openiam.base.ComponentModel method), 34
add_kwarg_linked_to_obs() (openiam.base.ComponentModel method), 32
add_local_obs() (openiam.base.ComponentModel method), 25
add_obs() (openiam.base.ComponentModel method), 24
add_obs_to_be_linked() (openiam.base.ObjectModel method), 26
add_par() (openiam.base.ObjectModel method), 22
add_par_linked_to_composite_obs() (openiam.base.ObjectModel method), 30
add_par_linked_to_obs() (openiam.base.ObjectModel method), 28
add_par_linked_to_par() (openiam.base.ObjectModel method), 27

M
module
openiam.base.CementedWellbore, 38

O
openiam.base.CementedWellbore
module, 38